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The wave equation for vectors and symmetric tensors in spherical coordinates is studied
under the divergence-free constraint. We describe a numerical method, based on the spec-
tral decomposition of vector/tensor components onto spherical harmonics, that allows for
the evolution of only those scalar fields which correspond to the divergence-free degrees of
freedom of the vector/tensor. The full vector/tensor field is recovered at each time-step
from these two (in the vector case), or three (symmetric tensor case) scalar fields, through
the solution of a first-order system of ordinary differential equations (ODE) for each spher-
ical harmonic. The correspondence with the poloidal–toroidal decomposition is shown for
the vector case. Numerical tests are presented using an explicit Chebyshev-tau method for
the radial coordinate.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Evolution partial differential equations (PDE) for vector fields under the divergence-free constraint appear in many phys-
ical models. Similar problems are to be solved with second-rank tensor fields. In most of these equations, if the initial data
and boundary conditions satisfy the divergence-free condition, then the solution on a given time interval is divergence-free
too. But from the numerical point of view, things can be more complicated and round-off errors can create undesired solu-
tions, which may then trigger growing unphysical modes. Therefore, in the case of vector fields, several methods for the
numerical solution of such PDEs have been devised, such as the constraint transport method [12] or the toroidal–poloidal
decomposition [11,20]. The aim of this paper is to present a new method for the case of symmetric tensor fields, which ap-
pear in general relativity within the so-called 3 + 1 approach [1], keeping in mind the vector case for which the method can
be closely related to the toroidal–poloidal approach. We first give motivations for the numerical study of divergence-free
vectors and tensors in Sections 1.1 and 1.2; we briefly introduce our notations and conventions for spherical coordinates
and grid in Section 1.3. The case of the vector divergence-free evolution is studied in Section 2, and the link with the poloi-
dal–toroidal decomposition is detailed in Section 2.3. We then turn to the symmetric tensor case in Section 3 with the par-
ticular traceless condition in Section 3.3. A discussion of the treatment of boundary conditions is given in Section 4, with the
. All rights reserved.
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particular point of inner boundary conditions (Section 4.3). Finally, some numerical experiments are reported in Section 5 to
support our algorithms and concluding remarks are given in Section 6.

1.1. Divergence-free vector fields in relativistic magneto-hydrodynamics

In classical electrodynamics, the magnetic field is known to be divergence-free since Maxwell’s equations. This result can
be extended to general-relativistic electrodynamics as well. In classical hydrodynamics, the continuity equation can be ex-
pressed as @tq +r � (qu) = 0, where q is the mass density of the fluid, and u its velocity. Various approximations give rise to
divergence-free vectors. Incompressible fluids have constant density along flow lines and therefore verify that their velocity
field u is divergence-free. Water is probably the most common example of an incompressible fluid. In an astrophysical con-
text, the incompressible approximation can lead to a pretty good approximation of the behavior of compressible fluid pro-
vided that the flow’s Mach number is much smaller than unity. Another useful hydrodynamic approximation is the anelastic
approximation, which essentially consists in filtering out the sound waves, whose extremely short time scale would other-
wise force the use of an impractically small time-step for numerical purposes. In general-relativistic magneto-hydrodynam-
ics, the anelastic approximation takes the formr � (qCu) = 0, where u is the coordinate fluid velocity, C the Lorentz factor of
the fluid, and q its rest-mass density.

Divergence-free vectors have given rise to a large literature in numerical simulations. For example, while using an induc-
tion equation to numerically evolve a magnetic field, there is no guarantee that the divergence of the updated magnetic field
is numerically conserved. The most common methods to conserve divergences in hyperbolic systems are constrained trans-
port methods, projection methods or hyperbolic divergence cleaning methods (see [25] for a review).

1.2. Divergence-free symmetric tensors in general relativity

The basic formalism of general relativity uses four-dimensional objects and, in particular, symmetric four-tensors as the
metric or the stress-energy tensor. A choice of the gauge, which comes naturally to describe the propagation of gravitational
waves is the harmonic gauge (e.g. [8]), for which the divergence of the four-metric is zero. The 3 + 1 formalism (see [1] for a
review) is an approach to general relativity introducing a slicing of the four-dimensional spacetime by three-dimensional
spacelike surfaces, which have a Riemannian induced three-metric. With this formalism, the four-dimensional tensors of
general relativity are projected onto these three-surfaces as three-dimensional tensors. Consequently, the choice of the
gauge on the three-surface is a major issue for the computation of the solutions of Einstein’s equations.

The divergence-free condition on the conformal three-metric has already been put forward by Dirac [9] in Cartesian coor-
dinates, and generalized to any type of coordinates in [4]. This conformal three-metric obeys an evolution equation which
can be cast into a wave-like propagation equation. Far from any strong source of gravitational field, this evolution equation
tends to a tensor wave equation, under the gauge constraint. With the choice of the generalized Dirac gauge this translates
into the system we study in Section 3, with the addition of one extra constraint: the fact that the determinant of the con-
formal metric must be one (Eq. (167) of [4]).

The choice of spherical coordinates and components comes naturally with the study of isolated spheroidal objects as rel-
ativistic stars or black holes. Moreover, boundary conditions for the metric or for the hydrodynamics equations can be better
expressed and implemented using tensor or vector components in the spherical basis. The numerical simulations of astro-
physically relevant objects in general relativity must therefore be able to deal with the evolution of divergence-free symmet-
ric tensors, in spherical coordinates and components. A particular care must be given to the fulfillment of the divergence-free
condition, since this additional constraint sets the spatial gauge on the spacetime.

1.3. Spherical components and coordinates

In the following, unless specified, all the vector and tensor fields shall be functions of the four spacetime coordinates
V(t,r,h,u) and h(t,r,h,u), where (r,h,u) are the polar spherical coordinates. The associated spherical orthonormal basis is de-
fined as:
er ¼
@

@r
; eh ¼

1
r
@

@h
; eu ¼

1
r sin h

@

@u
: ð1Þ
The vector and symmetric tensor fields shall be described by their contravariant components {Vr,Vh,Vu} and {hrr,hrh,hru,hhh,
hhu,huu}, using this spherical basis:
V ¼
X

i¼r;h;u

Viei; h ¼
X

i¼r;h;u

X
j¼r;h;u

hijei � ej: ð2Þ
The scalar Laplace operator acting on a field /(r,h,u) is written:
D/ ¼ @
2/
@r2 þ

2
r
@/
@r
þ 1

r2 Dhu/; ð3Þ
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where Dhu is the angular part of the Laplace operator, containing only derivatives with respect to h or u:
Dhu/ ¼ @
2/

@h2 þ
cos h
sin h

@/
@h
þ 1

sin2 h

@2/
@u2 : ð4Þ
We now introduce scalar spherical harmonics, defined on the sphere as (see Sec. 18.11 of [2] for more details)
8‘ P 0; 8m; 0 6 m 6 ‘; Ym
‘ ðh;uÞ ¼ eimuPm

‘ ðcos hÞ; ð5Þ
where Pm
‘ is the associated Legendre function. For negative m, spherical harmonics are defined
8m; ‘ 6 m < 0; Ym
‘ ðh;uÞ ¼ ð�1ÞmeimuPjmj‘ ðcos hÞ: ð6Þ
Their two main properties used in this study are that they form a complete basis for the development of regular scalar func-
tions on the sphere, and that they are eigenfunctions of the angular Laplace operator:
8ð‘;mÞ; DhuYm
‘ ¼ �‘ð‘þ 1ÞYm

‘ : ð7Þ
2. Vector case

We look for the solution of the following initial-boundary value problem of unknown vector V, inside a sphere of (con-
stant) radius R, thus "(h,u):
8t P 0; 8r < R;
@2V
@t2 ¼ DV; ð8Þ

8t P 0; 8r 6 R; $ � V ¼ 0; ð9Þ
8r 6 R; Vð0; r; h;uÞ ¼ v0ðr; h;uÞ;
8r 6 R; @V

@t jt¼0 ¼ w0ðr; h;uÞ;
8t P 0; Vðt;R; h;uÞ ¼ b0ðt; h;uÞ:

ð10Þ
v0,w0 and b0 are given regular functions for initial data and boundary conditions, respectively. D is the vector Laplace oper-
ator, which in spherical coordinates and in the contravariant representation (2) using the orthonormal basis (1) reads:
DVð Þr ¼ @
2Vr

@r2 þ
4
r
@Vr

@r
þ 2Vr

r2 þ
1
r2 DhuVr � 2

r
H; ð11Þ

DVð Þh ¼ @
2Vh

@r2 þ
2
r
@Vh

@r
þ 1

r2 DhuVh þ 2
@Vr

@h
� Vh

sin2 h
� 2

cos h

sin2 h

@Vu

@u

 !
;

DVð Þu ¼ @
2Vu

@r2 þ
2
r
@Vu

@r
þ 1

r2 DhuVu þ 2
sin h

@Vr

@u
þ 2

cos h

sin2 h

@Vh

@u
� Vu

sin2 h

 !
;

with the divergence H
H � $ � V ¼ @Vr

@r
þ 2Vr

r
þ 1

r
@Vh

@h
þ Vh

tan h
þ 1

sin h
@Vu

@u

 !
: ð12Þ
One can remark that a necessary condition for this system to be well-posed is that
$ � v0 ¼ $ �w0 ¼ 0: ð13Þ
In addition, the boundary setting at r = R is actually overdetermined: the three conditions are not independent because of the
divergence constraint. This aspect of the problem will be developed in more details in Section 4.1.

In the rest of this Section, we devise a method to verify both Eqs. (8) and (9). This technique is similar to that presented in
[3] with the difference that we motivate it by the use of vector spherical harmonics, and can easily be related to the poloidal–
toroidal decomposition method, as discussed in Section 2.3.

2.1. Decomposition on vector spherical harmonics

The first step is to decompose the angular dependence of the vector field V onto a basis of pure spin vector harmonics (see
[24] for a review):
Vðt; r; h;uÞ ¼
X
‘;m

E‘mðt; rÞYE
‘m þ B‘mðt; rÞYB

‘m þ R‘mðt; rÞYR
‘m

� �
; ð14Þ



402 J. Novak et al. / Journal of Computational Physics 229 (2010) 399–414
defined from the scalar spherical harmonics as
8‘ > 0; 8 � ‘ 6 m 6 ‘; YE
‘m ¼ r rYm

‘ ; ð15Þ
8‘ > 0; 8 � ‘ 6 m 6 ‘; YB

‘m ¼ er � YE
‘m; ð16Þ

8‘ P 0; 8 � ‘ 6 m 6 ‘; YR
‘m ¼ Ym

‘ er ; ð17Þ
wherer is the gradient in the orthonormal basis (1). Note that both YE
‘m and YB

‘m are purely transverse, whereas YR
‘m is purely

radial. From this decomposition, we define the pure spin components of V by summing all the multipoles with scalar spher-
ical harmonics (5):
Vgðt; r; h;uÞ ¼
X
‘;m

E‘mYm
‘ ; ð18Þ

Vlðt; r; h;uÞ ¼
X
‘;m

B‘mYm
‘ ; ð19Þ
the last one being the usual r-component
X
‘;m

R‘mYm
‘ ¼ Vr: ð20Þ
The advantages of these pure spin components are first, that by construction they can be expanded onto the scalar spherical
harmonic basis, and second, that angular derivatives appearing in all equations considered transform into the angular La-
place operator (7).

To be more explicit, (Vg,Vl) can be related to the vector spherical components by (see also [4]):
Vh ¼ @Vg

@h
� 1

sin h
@Vl

@u
; ð21Þ

Vu ¼ 1
sin h

@Vg

@u
þ @Vl

@h
;

and inversely
DhuVg ¼ @Vh

@h
þ Vh

tan h
þ 1

sin h
@Vu

@u
; ð22Þ

DhuVl ¼ @Vu

@h
þ Vu

tan h
� 1

sin h
@Vh

@u
: ð23Þ
Let us here point out that the angular Laplace operator Dhu is diagonal with respect to the functional basis of spherical har-
monics and, therefore, the above relations can directly be used to obtain Vg and Vl.

Thus, if the fields are defined on the whole sphere h 2 [0,p],u 2 [0,2p), it is possible to transform the usual components
(Vh,Vu) to the pure spin ones (Vg,Vl) by this one-to-one transformation, up to a constant (‘ = 0 part) for Vg and Vl. Since this
constant is not relevant, it shall be set to zero and disregarded in the following. Therefore, a vector field shall be represented
equivalently by its usual spherical components or by (Vr,Vg,Vl).

2.2. Divergence-free degrees of freedom

From the vector spherical harmonic decomposition, we now compute two scalar fields that represent the divergence-free
degrees of freedom of a vector. We start from the divergence of a general vector W, expressed in terms of pure spin
components:
H ¼ @Wr

@r
þ 2

Wr

r
þ 1

r
DhuWg; ð24Þ
where Wg has been computed for the vector W from Eq. (22). This shows that the divergence of W does not depend on the
pure spin component Wl. On the other hand, it is well-known that any sufficiently smooth and rapidly decaying vector field
W can be (uniquely on R3) decomposed as a sum of a gradient and a divergence-free part (Helmholtz’s theorem)
W ¼ r/þ D0; ð25Þ
withr � D0 = 0. From the formula (23), one can check that the component Wl only depends on D0. Next, taking the curl of W
and, in particular, combining the h-and u-components of this curl, one has that @rW

g þ Wg

r � Wr

r has the same property of
being invariant under the addition of any gradient field to W, thus depends only on D0. Therefore, we define the potential
A ¼ @Wg

@r
þWg

r
�Wr

r
: ð26Þ
As a consequence, we have that
D0 ¼ 0()Wl ¼ 0 and A ¼ 0: ð27Þ
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We have thus identified two scalar degrees of freedom for a divergence-free vector field, which can be easily related to the
well-known poloidal–toroidal decomposition (Section 2.3), but have the advantage of being generalizable to the symmetric
tensor case.

We now write the wave Eq. (8) in terms of Vl and A (computed from Vr and Vg). It is first interesting to examine the pure
spin components of the vector Laplace operator (11):
DVð Þg ¼ DVg þ 2
Vr

r2 ; ð28Þ

DVð Þl ¼ DVl; ð29Þ
one sees that the equation for Vl decouples from the system, therefore Eq. (8) implies that
@2Vl

@t2 ¼ DVl: ð30Þ
Forming then from (11) and (28) an equation for the potential A, which is a consequence of the original wave Eq. (8), we
obtain
@2A
@t2 ¼ DA: ð31Þ
We are left with two scalar wave Eqs. (30) and (31), for the divergence-free part of the vector field V. The recovery of the full
vector field shall be discussed in Section 2.4; the treatment of boundary conditions shall be presented in Section 4.1.

2.3. Link with poloidal–toroidal decomposition

According to the classical poloidal–toroidal decomposition, a divergence-free vector field F can be considered to be gen-
erated by two scalar potentials U and W, via
F ¼ $� ðWkÞ þ r�r� ðUkÞ: ð32Þ
Here, k is a unit vector, called the pilot vector, which is chosen according to the geometry of the problem considered. In [6,7],
k is chosen to be ez in cylindrical coordinates. One can also find the decomposition F ¼ $� ðAðr; hÞeuÞ þ Bðr; hÞeu when con-
sidering axisymmetric solenoidal fields (see for example [17]). The latter representation makes A appear clearly as a poloidal
component, and B as a toroidal component. In order to link the general poloidal–toroidal formalism to our previous poten-
tials, we chose k = er in spherical coordinates (sometimes called the Mie decomposition, see [10]). Then, one can show that
F ¼ � 1
r2 DhuUer þ

1
r

1
sin h

@uWþ @h@rU
� �

eh þ
1
r
�@hWþ

1
sin h

@u@rU
� �

eu: ð33Þ
Hence, we can identify the former pure spin components Fg and Fl through
Fg ¼ 1
r
@rU;

Fl ¼ �1
r
W:
Therefore, the potential A is linked to the potential U via
A ¼ 1
r
@2

r Uþ
1
r3 DhuU ¼ D

U
r

� �
; ð34Þ
which gives us a compatibility condition
DhuA ¼ �DðrFrÞ: ð35Þ
The latter equation expresses that @r(r2H) = 0 for the original vector. Since our vector is a regular function of coordinates, it
expresses that H = 0.

One can also show the following relations
er � r � F ¼ 1
r
DhuFl;

er � r �r� F ¼ 1
r
DhuA:
2.4. Integration scheme

We defer to Section 5.1 the numerical details about the integration procedure, and we sketch here the various steps. From
the result of Section 2.2, the problem (8), (9) can be transformed into two initial-value boundary problems, for the



404 J. Novak et al. / Journal of Computational Physics 229 (2010) 399–414
component Vl (30) and the potential A (31), respectively. Initial data can be deduced from v0 and w0, so that Vl(t = 0) and
@Vl/@t(t = 0) are the l-components of, respectively, v0 and w0. The same is true for the A potential. The determination of
boundary conditions from the knowledge of b0 shall be discussed in Section 4. We therefore assume here that we have com-
puted the component Vl and the potential A, inside the sphere of radius R, for a given interval [0,T], and we show how to
recover the whole vector V.

The pure spin components (Vr,Vg) of the vector V are obtained by solving the system of PDEs composed by the definition
of the potential A (26), together with the divergence-free condition (24). From their definitions (18)–(20), it is clear that the
angular parts of both Vr and Vg can be decomposed onto the basis of scalar spherical harmonics, and therefore A as well:
Aðt; r; h;uÞ ¼
X
‘;m

A‘mðt; rÞYm
‘ ðh;uÞ: ð36Þ
We are left with the following set of systems of ordinary differential equations in the r-coordinate:
8‘ > 0; 8m‘ 6 m 6 ‘;
@R‘m

@r þ 2 R‘m

r �
‘ð‘þ1Þ

r E‘m ¼ 0
@E‘m

@r þ E‘m

r � R‘m

r ¼ A‘m

(
: ð37Þ
The potential A being given, the pure spin components Vr and Vg are obtained from this system, with the boundary condi-
tions discussed in Section 4.1. The l-component is already known too, so it is possible to compute the spherical components
of V"t 2 [0,T], from Eq. (21). Note that all angular derivatives present in this system (37) are only in the form of the angular
Laplace operator Dhu (4). It must also be emphasized that the divergence-free condition is not enforced in terms of spherical
components (Eq. (12)), but in terms of pure spin components. Thus, if the value of the divergence is numerically checked, it
shall be higher than machine precision, because of the numerical derivatives one must compute to pass from pure spin to
spherical components (Eq. (21)).

The properties of the system (37) are easy to study. Substituting R‘m in the first line by its expression as a function of E‘m

and A‘m (obtained from the second line), one gets a simple Poisson equation:
D rE‘m
� �

¼ r
@A‘m

@r
þ 2A‘m

: ð38Þ
The discussion about boundary conditions, homogeneous solutions and regularity for r = 0 and r ?1 are immediately de-
duced from those of the Poisson equation (see e.g. [13]).

In the case where a source S is present on the right-hand side of the problem (8), the method of imposingr � V = 0 can be
generalized by adding sources to Eqs. (30) and (31), which are deduced from S. Indeed, it is easy to show that the source for
the equation for Vl is the pure spin l-component of S and the source for the equation for A is the equivalent potential com-
puted from S pure spin components, using formula (26). Note that an integrability condition for this problem is that the
source be divergence-free too. Therefore, for a well-posed problem, any gradient term present in S can be considered as spu-
rious and is naturally removed by this method, since the l-component and the A potential are both insensitive to the gra-
dient parts.

3. Symmetric tensor case

Similarly to the vector case studied in Section 2, we look here for the solution of an initial-boundary value problem of
unknown symmetric tensor h, inside a sphere of radius R. As explained in Section 1.3, the symmetric tensor h shall be rep-
resented by its contravariant components hij(=hji), where the indices run from 1(r) to 3(u); moreover, we suppose that all
components of h decay to zero at least as fast as 1/r, as r ?1. We shall also use the Einstein summation convention over
repeated indices.

Thus the problem is written, "(h,u):
8t P 0; 8r < R;
@2hij

@t2 ¼ Dhij
; ð39Þ

8t P 0; 8r 6 R; rjh
ij ¼ 0; ð40Þ

8r 6 R; hijð0; r; h;uÞ ¼ aij
0ðr; h;uÞ;

8r 6 R;
@hij

@t

�����
t¼0

¼ cij
0ðr; h;uÞ;

8t P 0; hijðt;R; h;uÞ ¼ bij
0ðt; h;uÞ: ð41Þ
The tensors aij
0; c

ij
0 and bij

0 are given regular functions for initial data and boundary conditions, respectively. The full expression
of the tensor Laplace operator in spherical coordinates and in the orthonormal spherical basis (1) is given by Eqs. (123)–(128)
of [4] and shall not be recalled here. We point out again that the boundary setting at r = R is overdetermined: this is discussed
in more detail in Section 4.2.
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We introduce the vector H, defined as the divergence of hij and given in the spherical contravariant components (2) by:
Hi � rjh
ij ()

Hr ¼ @hrr

@r þ 2hrr

r þ 1
r

@hrh

@h þ 1
sin h

@hru

@u � hhh � huu þ hrh

tan h

� �
;

Hh ¼ @hrh

@r þ 3hrh

r þ 1
r

@hhh

@h þ 1
sin h

@hhu

@u þ 1
tan h hhh � huu

� �� �
;

Hu ¼ @hru

@r þ 3hru

r þ 1
r

@hhu

@h þ 1
sin h

@huu

@u þ 2hhu

tan h

� �
¼ 0:

8>>>><>>>>: ð42Þ
We now detail, in the rest of this Section, a method to verify both evolution Eq. (39) and the divergence-free constraint (40).

3.1. Decomposition on tensor spherical harmonics

As in the vector case (Section 2.1), we start by decomposing the angular dependence of the tensor field hij onto pure spin
tensor harmonics, introduced by [21] and [27] (we again use the notations of [24]):
hðt; r; h;uÞ ¼
X
‘;m

L‘m0 TL0
‘m þ T‘m

0 TT0
‘m þ E‘m1 TE1

‘m þ B‘m1 TB1
‘m þ E‘m2 TE2

‘m þ B‘m2 TB2
‘m

� �
; ð43Þ
where ðL‘m0 ; T‘m
0 ; E‘m1 ;B‘m1 ; E‘m2 ;B‘m2 Þ are all functions of only (t,r). Complete definitions and properties of this set of tensor har-

monics can be found in [24]. Note that these harmonics have been devised in order to describe gravitational radiation, far
from any source. In that respect, the most relevant harmonics are TE2 and TB2 , since they are transverse and traceless. The
pure spin components of the tensor h are defined as:
hrrðt; r; h;uÞ ¼
X
‘;m

L‘m0 Ym
‘ ; ð44Þ

hsðt; r; h;uÞ ¼
X
‘;m

T‘m
0 Ym

‘ ; ð45Þ

hgðt; r; h;uÞ ¼
X
‘;m

E‘m1 Ym
‘ ; ð46Þ

hlðt; r; h;uÞ ¼
X
‘;m

B‘m1 Ym
‘ ; ð47Þ

hWðt; r; h;uÞ ¼
X
‘;m

E‘m2 Ym
‘ ; ð48Þ

hX ðt; r; h;uÞ ¼
X
‘;m

B‘m2 Ym
‘ : ð49Þ
Explicit relations between the last five components and the usual spherical components (2) are now given.
hs ¼ hhh þ huu
; ð50Þ
is transverse; and the total trace is simply given by
h ¼ hrr þ hs
: ð51Þ
In the following we shall use either the component hs or the trace. The components hg and hl have similar formulas to those
of the vector pure spin components, as {hri}i=1,2,3 can be seen as a vector:
hrh ¼ @hg

@h
� 1

sin h
@hl

@u
; ð52Þ

hru ¼ 1
sin h

@hg

@u
þ @hl

@h
;

the reverse formula being similar to Eqs. (22) and (23), they are not recalled here. Finally, the last two components are obtained
by:
P �
hhh � huu
� �

2
¼ @

2hW

@h2 �
1

tan h
@hW

@h
� 1

sin2 h

@2hW

@u2 � 2
@

@h
1

sin h
@hX

@u

 !
; ð53Þ

hhu ¼ @
2hX

@h2 �
1

tan h
@hX

@h
� 1

sin2 h

@2hX

@u2 þ 2
@

@h
1

sin h
@hW

@u

 !
;

and the inverse relations are given by:
Dhu Dhu þ 2
� �

hW ¼ @
2P

@h2 þ
3

tan h
@P
@h
� 1

sin2 h

@2P
@u2 � 2P þ 2

sin h
@

@u
@hhu

@h
þ hhu

tan h

 !
; ð54Þ

Dhu Dhu þ 2
� �

hX ¼ @
2hhu

@h2 þ
3

tan h
@hhu

@h
� 1

sin2 h

@2hhu

@u2 � 2hhu � 2
sin h

@

@u
@P
@h
þ P

tan h

� �
: ð55Þ



406 J. Novak et al. / Journal of Computational Physics 229 (2010) 399–414
Here as for the vector case, the hg and hl components do not contain any relevant ‘ = 0 term, whereas hW and hX contain
neither ‘ = 0, nor ‘ = 1 terms, as expected for transverse traceless parts of the tensor h. We shall use any set of components
of the tensor h: either the usual ones {hij}, using the spherical basis, or the pure spin ones fhrr

;hsðor hÞ; hg
;hl

;hW
;hXg.

3.2. Divergence-free degrees of freedom

The vector H defined as the divergence of h in Eq. (42) can be expanded in terms of vector pure spin components, which
are then written as functions of the tensor pure spin components of h (we use the trace h instead of hs):
Hr ¼ @hrr

@r
þ 3hrr

r
þ 1

r
Dhuhg � h
� �

; ð56Þ

Hg ¼ Dhu
@hg

@r
þ 3hg

r
þ 1

r
Dhu þ 2
� �

hW þ h� hrr

2

� �	 

; ð57Þ

Hl ¼ Dhu
@hl

@r
þ 3hl

r
þ 1

r
Dhu þ 2
� �

hX

	 

: ð58Þ
A possible generalization of the Helmholtz theorem to the symmetric tensor case is that, for any sufficiently smooth and rap-
idly decaying symmetric tensor field T, one can find a unique (on R3) decomposition of the form
Tij ¼ riLj þrjLi þ hij
0; ð59Þ
withrjh
ij
0 ¼ 0. With these definitions,rjT

ij = 0, Li = 0 which means that, from the six scalar degrees of freedom of the sym-
metric tensor Tij, the three longitudinal ones can be represented by the three components of the vector L. Therefore, the
divergence-free symmetric tensor hij

0 has only three scalar degrees of freedom that we exhibit hereafter.
One can check that the three scalar potentials defined by
A ¼ @TX

@r
� Tl

r
; ð60Þ

B ¼ @TW

@r
� 1

2r
DhuTW � Tg

r
þ T � Trr

4r
; ð61Þ

C ¼ @T
@r
� @Trr

@r
þ T

r
� 3Trr

r
� 2Dhu

@TW

@r
þ TW

r

� �
; ð62Þ
satisfy the property
A ¼ B ¼ C ¼ 0() h0 ¼ 0; ð63Þ
and represent the three divergence-free scalar degrees of freedom of a symmetric tensor.
In order to write the wave Eq. (39) in terms of these potentials, we first express the pure spin components of the tensor

Laplace operator acting on a general symmetric tensor h:
Dhð Þrr ¼ Dhrr � 6hrr

r2 �
4
r2 Dhuhg þ 2h

r2 ð64Þ

Dhð Þg ¼ Dhg þ 2
r
@hg

@r
þ 2hg

r2 �
2
r

@hg

@r
þ 3hg

r
þ Dhu þ 2
� �hW

r
þ 1

2r
h� 3

2r
hrr

 !
; ð65Þ

Dhð Þl ¼ Dhl þ 2
r
@hl

@r
þ 2hl

r2 �
2
r

@hl

@r
þ 3hl

r
þ Dhu þ 2
� �hX

r

 !
; ð66Þ

Dhð ÞW ¼ DhW þ 2hW

r2 þ
2hg

r2 ; ð67Þ

Dhð ÞX ¼ DhX þ 2hX

r2 þ
2hl

r2 ; ð68Þ
trace of Dh ¼ Dh: ð69Þ
The term between parentheses in Eq. (66) is exactly zero in the case of a divergence-free tensor, as it represents the l-com-
ponent of the vector H (58). The similar term in Eq. (65) reduces to �hrr/r, when using Hg = 0 with Eq. (57). We can now write
evolution equations, implied by the original tensor wave Eq. (39):
@2A

@t2 ¼ DA; ð70Þ

@2B

@t2 ¼ DB � C

2r2 ; ð71Þ

@2C

@t2 ¼ DC þ 2C
r2 þ

8DhuB

r2 : ð72Þ
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The situation is therefore slightly more complicated than in the vector case with Eqs. (30) and (31). Indeed, the two poten-
tials B and C are coupled, but it is possible to define new potentials satisfying decoupled wave-like evolution equations. We
first write the scalar spherical harmonic decomposition of A;B and C:
Aðt; r; h;uÞ ¼
X
‘;m

A‘mðt; rÞYm
‘ ðh;uÞ;

Bðt; r; h;uÞ ¼
X
‘;m

B‘mðt; rÞYm
‘ ðh;uÞ;

Cðt; r; h;uÞ ¼
X
‘;m

C‘mðt; rÞYm
‘ ðh;uÞ:
Then, we define new potentials eB and bC as:
eBðt; r; h;uÞ ¼X
‘;m

2B‘mðt; rÞ þ C‘mðt; rÞ
2ð‘þ 1Þ

� �
Ym
‘ ðh;uÞ; ð73Þ

bCðt; r; h;uÞ ¼X
‘;m

C‘mðt; rÞ � 4‘B‘mðt; rÞ
� �

Ym
‘ ðh;uÞ: ð74Þ
The Eqs. (71) and (72) are transformed into:
@2 eB
@t2 ¼ eDeB; ð75Þ

@2bC
@t2 ¼ bDbC; ð76Þ
with, for any scalar field f ðr; h;uÞ ¼
P
ð‘;mÞf

‘mðrÞYm
‘ ðh;uÞ, the operators defined as:
eDf ¼ @
2f
@r2 þ

2
r
@f
@r
þ 1

r2

X
‘m

�‘ð‘� 1Þf ‘mYm
‘

" #
; ð77Þ

bDf ¼ @
2f
@r2 þ

2
r
@f
@r
þ 1

r2

X
‘m

�ð‘þ 1Þð‘þ 2Þf ‘mYm
‘

" #
: ð78Þ
These two operators are very similar to the usual Laplace operator, but in the angular part Dhu, they contain a shift of, respec-
tively �1 and +1 in the multipolar number ‘, for eD and bD. We thus have obtained three evolution wave-like Eqs. (70), (75)
and (76) for the three scalar degrees of freedom of a divergence-free symmetric tensor.

3.3. Traceless case

As presented in Section 1.2, some evolution problems of symmetric tensors in general relativity can have another con-
straint, in addition to the divergence-free condition already studied (40). This is the condition of determinant one for the
conformal metric which turns into an algebraic condition (Eq. (169) of [4]), and is enforced by iteratively solving a Poisson
equation with the trace of the tensor as a source, as described in Sec. V.D of [4]. Therefore, in the following the trace of the
unknown tensor h is assumed to be known.

The fact that the trace h (51) of a divergence-free symmetric tensor is fixed reduces a priori the number of scalar degrees
of freedom to two. For instance, we here show that if the trace is given, the scalar potentials B and C are linked. We take the
partial derivative with respect to r of the definition of C (62) and B (61) to obtain:
@C

@r
þ 2C

r
þ 2Dhu

@B

@r
þ 3B

r
� C

4r

� �
¼ Dh: ð79Þ
Therefore, if h and C are given, it is possible to integrate this relation with respect to the r-coordinate to obtain B (which we
have assumed to converge to 0 as r ?1). Because of the definitions (73) and (74), eB and bC are also linked together if the
trace is given.

We shall assume in the following that this trace is zero. All the equations presented hereafter can easily be generalized to
the non-zero (given) trace case, taking the general form of the equations of Section 3.2. We shall therefore use only two sca-
lar potentials, namely A and eB to describe a general traceless divergence-free symmetric tensor.

3.4. Integration scheme

Similarly to what has been done in the beginning of this section, we consider the homogeneous wave equation for a sym-
metric tensor (39), under the constraints that the tensor be divergence-free (40) and traceless (h = 0). We have seen in Sec-
tion 3.3 that it was necessary to solve for at least the two wave-like evolution Eqs. (70) and (75). We describe now how to
obtain the whole tensor, once Aðt; r; h;uÞ and eBðt; r; h;uÞ are known.
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In order to obtain first the six pure spin components (actually, their spherical harmonic decompositions (44)–(49) of h at
any time t, we use the following six equations: the traceless condition, the three divergence-free conditions and the defini-
tions of A and eB. They represent two systems of coupled differential equations in the r-coordinate, that we express in terms
of the tensor spherical harmonic components (43). The first one comes from the definition of A (60) and the Hl = 0 condition
(58); it couples the l-and the X-components of h:
@B‘m2

@r
� B‘m1

r
¼ A‘m; ð80Þ

@B‘m1

@r
þ 3B‘m1

r
þ 2� ‘ð‘þ 1ÞB‘m2

r
¼ 0: ð81Þ
This system has two unknown functions B‘m1 and B‘m2 , whereas A‘m is obtained from the time evolution of Aðt; r; h;uÞ.
The second one comes from the definition of eB (73) and the two Hr = Hg = 0 conditions (56) and (57); it couples the rr-,

g-and W-components:
ð‘þ 2Þ @E‘m2

@r
þ ‘ð‘þ 2Þ E

‘m
2

r
� 2E‘m1

r
� 1

2ð‘þ 1Þ
@L‘m0

@r
� ‘þ 4
‘þ 1

L‘m0

2r
¼ ~B‘m; ð82Þ

@L‘m0

@r
þ 3L‘m0

r
� ‘ð‘þ 1ÞE‘m1

r
¼ 0; ð83Þ

@E‘m1

@r
þ 3E‘m1

r
� L‘m0

2r
þ 2� ‘ð‘þ 1ÞE‘m2

r
¼ 0: ð84Þ
Here, the unknowns are L‘m0 ; E‘m1 and E‘m2 and eB‘m is known from the evolution of eBðt; r; h;uÞ.
When looking at a more general setting, the trace h appears only in the second system. If we combine Eq. (80) with Eq.

(81), we obtain a Poisson equation for the unknown rhX , with A and its radial derivative as a source. As for the vector case,
this system can be solved using, for example, the spectral scalar Poisson solver described in [13], and one obtains the pure
spin components hl and hX .

Such an argument cannot be used for the second system, but a search for homogeneous solutions gives that, for a given ‘,
the simple powers of r:
r‘�2;
1

r‘þ3 and
1

r‘þ1 ; ð85Þ
represent a basis of the kernel of the system (82)–(84). With this information, one can devise a simple spectral method to
solve this system (see Section 5.1) and obtain the pure spin components hrr, hg and hW . With the traceless condition, one can
also recover hs from hrr, and finally use Eqs. (52) and (53) to get the spherical components of h.

4. Boundary conditions

4.1. Vector system

We discuss here the spatial boundary conditions to be used during our procedure, so that we recover the unknown vector
field at any time-step. The source of the vector wave equation is put to zero for the sake of clarity; but the reasoning would
be exactly the same in the general case.

As pointed out in Section 2.4, the recovery of the vector field at each time-step will require two different operations: first,
we use the two scalar wave Eqs. (31) and (30) to recover A and Vl. Two boundary conditions, set at the outer sphere (the
boundary of our computation domain), will then be needed for these quantities. The second step will consist of the inversion
of the differential system (37), to obtain the pure spin components Vr and Vg. This system is, in terms of the structure of the
space of homogeneous solutions, mathematically equivalent to a Poisson problem (see Eq. (38)); its inversion will then also
require an additional boundary condition.

From the setting of our problem presented at the beginning of Section 2, we can impose Dirichlet boundary conditions for
the 3 pure spin components on the outer sphere. The condition on Vl enables us to recover the value of the entire field on our
computational domain, through the direct resolution of (30). Once we obtain the value of the field A on our domain, we can
use a condition on either Vr or Vg to invert the system (37), and retrieve the additional spin components.

There remains the necessity of imposing a boundary condition on A to solve Eq. (31). This cannot be done using condition
at r = R in (10) and the definition (26), because @Vg

@r must be specified. To overcome this difficulty, we exhibit here algebraic
relations that link the value of A at the boundary and time derivatives of the pure spin components. These will be compat-
ibility conditions, derived only from the structure of our problem. We express radial derivatives of equations (24) and (26),
respectively, to obtain, using relations (11) and (28), the following identities (see also Eq. (35)):
1
r
DhuA ¼ � @

2Vr

@t2 ; ð86Þ

@A
@r
þ A

r
¼ @

2Vg

@t2 : ð87Þ
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Those equations are derived using only the fact that our vector field satisfies the wave equation and is divergence-free. From
the knowledge of the vector field at the boundary, we can impose either of these two relations as boundary conditions for A;
the first being of Dirichlet type for each spherical harmonic of A, the second of Robin type. This way we are able to solve Eq.
(31), and complete our resolution scheme.

Let us finally note that our boundary problem is, as one could guess, actually overdetermined: there is no need to know
the value of the entire vector field on the outer sphere. It can be easily seen that, if one only has access to the boundary values
of Vl and Vr, or Vl and Vg, the boundary conditions for all equations can be provided. This also gives us insight about what
would happen if we set up a numerical problem in which spatial boundary conditions are not consistent with a solution of
Eqs. (8) and (9); this could occur for example because of numerical rounding errors or simply a physical boundary prescrip-
tion which is not compatible with a divergence-free vector field. Our method will then still provide a solution that is diver-
gence-free and which satisfies Eqs. (8) and (9); however only the boundary conditions that are directly enforced will be
satisfied. For example, if we choose in our scheme to enforce boundary conditions on Vl and Vg, the outer boundary condi-
tions that are satisfied at each time-step are actually of the form (we keep the notation of (10)):
8t P 0; Vlðt;R; h;uÞ ¼ bl
0 ðt; h;uÞ;

Vgðt;R; h;uÞ ¼ bg
0ðt; h;uÞ;

@Vrðt;R; h;uÞ
@r

þ 2
r

Vrðt;R; h;uÞ ¼ �1
r
Dhubg

0ðt; h;uÞ: ð88Þ
The last condition is directly derived from the vanishing of the divergence (Eq. (24)) at the boundary. Let us note that we do
not even impose a Dirichlet condition on Vr as was originally intended. We may then not satisfy all the boundary conditions
we wished to prescribe at first. This may also depend on the boundary value we choose to use for the inversion of the system
(37).

We do not treat alternative cases for the boundary problem (for which the knowledge of the vector field on the outer
sphere could be substituted by, for example, the knowledge of its first radial derivative); but a similar approach would also
provide expressions for the boundary conditions of all the equations tackled in our scheme.

4.2. Tensor system

The tensor problem presents itself in a similar way to the vector case, only with a few additional difficulties. As seen in
Section 3.4, we can separate the problem into two parts; the first consists in retrieving the field A from Eq. (70), and then get
the spin components hl and hX . In a similar way, we compute the value of eB from Eq. (75), so that we obtain the fields hrr

;hW

and hg from the inversion of the system (82)–(84). The field hs is deduced from the traceless hypothesis. The tensor field is
then entirely determined.

As in the vector case, the solution of wave equations for A and eB requires one boundary condition for each equation. The
elliptic system (80) and (81) is also quite similar to that for the vector case, and its space of homogeneous solutions is also
equivalent to that of a single Poisson equation. One boundary condition is also required; it will be chosen as a Dirichlet con-
dition on either hl or hX , according to the setting of our problem (41).

For the elliptic system (82)–(84), the homogeneous solutions have been characterized in Section 3.4. The only basis vector
of the kernel of solutions that is regular in our computation domain is, for any ‘ P 2, the solution r‘�2. The other two vectors
of the kernel basis are not regular at the origin of spherical coordinates. This means, from a basic point of view, that one
boundary condition will be sufficient at the outer sphere. It will be provided, again according to our problem setting, as a
Dirichlet condition on any of the fields hrr,hg or hW .

The last boundary problem concerns the fields A and eB. They will be handled the same way as in the vector case. We take
the radial derivatives of the Eqs. (58) and (60), using the elliptic Eqs. (66) and (68), to obtain the following compatibility
conditions:
ðDhu þ 2ÞA ¼ � @
2hl

@t2 ; ð89Þ

@A

@r
þ 2

A

r
¼ @

2hX

@t2 : ð90Þ
These are again derived using only the divergence-free property of the vector field as well as the verification of the main
wave equation. Using the known value of, respectively, hl and hX at the outer boundary, we obtain either a Dirichlet bound-
ary condition for each spherical harmonic from the first relation, or a Robin condition with the second one. Again those iden-
tities have been obtained only from the equations of our problem and the definitions of the variables we use.

Taking the same path for the second part of the problem, we express radial derivatives of Eqs. (56), (57), (61) and (62) to
obtain respectively, and for each spherical harmonic, the following relations:
@2L‘m0

@t2 ¼ �
1

ð2‘þ 1Þr
ð‘þ 1Þð‘þ 2Þ

2
bC ‘m � ‘ð‘þ 1Þð‘� 1ÞeB‘m

	 

; ð91Þ
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@2E‘m1

@t2 ¼
1

ð2‘þ 1Þr ð‘þ 1Þð‘� 1ÞeB‘m þ ‘þ 2
2

bC ‘m	 

; ð92Þ
@2E‘m2

@t2 ¼
1

2‘þ 1
ð‘þ 1Þ

2
@ eB‘m

@r
� 1

4
@bC ‘m
@r
� ð‘þ 1Þð‘þ 2Þ

2

eB‘m

r
� ‘� 3

4

bC ‘m
r

" #
; ð93Þ
@2ðL‘m0 þ T‘m
0 Þ

@t2 ¼ 1
2‘þ 1

ð‘þ1Þð‘þ 2Þ
2

@bC ‘m
@r
� ‘ð‘þ 1Þð‘þ 2Þ@

eB‘m

@r
þ ‘ð‘þ 1Þð‘�1Þ2

eB‘m

r
þ 1

2
ð‘þ1Þ ‘ð‘�3Þ þ ‘þ4½ �

bC ‘m
r

" #
:

ð94Þ
When expressing the vanishing of the trace, the last equation can be transformed into:
@2E‘m2

@t2 ¼
1

2‘ð‘þ 1Þð2‘þ 1Þ ð‘þ 1Þ @
bC ‘m
@r
þ 2‘ð‘þ 1Þ @

eB‘m

@r
þ ð‘þ 1Þð‘þ 4Þ

2

bC ‘m
r
� ‘ð‘þ 1Þð‘� 3Þ

eB‘m

r

" #
: ð95Þ
Although those equations involve both the fields eB and bC , one can easily see that combining them can lead to conditions on
the field eB only. For example, the combination of (91) and (92) provides, for each index ‘:
eB‘m ¼ r
ð‘þ 1Þð‘� 1Þ

@2L‘m0

@t2 þ ð‘þ 1Þ @
2E‘m1

@t2

" #
; ð96Þ
which is interpreted as a Dirichlet boundary condition for eB. Robin boundary conditions can be obtained from the combi-
nation of Eqs. (93) and (94), and either (91) or (92). The tensor boundary problem is then entirely solved; tests for some
of the boundary conditions derived here are presented in Section 5. Let us note again that this problem is overdetermined:
concerning the first system, the knowledge of a Dirichlet condition on either only hl, or only hX suffices to provide boundary
conditions for A and the system (80) and (81). For the part of the algorithm related to eB, we easily see that Dirichlet con-
ditions for any two of the spin components hrr,hg and hW are sufficient to solve the boundary problem.

We finally point out that, in the same fashion as in the vector case, if the value bij
0 imposed as a Dirichlet condition for the

tensor at the outer boundary (Eq. (41)) is not consistent with the system, the boundary conditions actually imposed on our
scheme will be slightly different: only the Dirichlet conditions for the pure spin components that are explicitly enforced will
be satisfied. Other boundary values will only express the coherence with respect to the fact that the solution is indeed diver-
gence-free. As done in Section 4.1, it is possible to express other boundary conditions enforced in practice by using the
expression for the tensor divergence H as a function of the pure spin components.
4.3. Working in a shell: inner boundary conditions

We say a few words here about the resolution of the tensorial problem when our computation domain is no longer an
entire sphere, but is instead bounded on the interior at a finite coordinate radius r = Rin > 0. We add in our setting the con-
dition that, "(h,u):
8t P 0; hijðt;Rin; h;uÞ ¼ fij
0ðt; h;uÞ:
Physical information is then also provided at the internal boundary (this is, again, an overdetermined set of boundary con-
ditions). This new geometry will imply the need for two inner boundary conditions to be imposed for the wave equations on
A and in eB. These are easily found using the results of the last section and the knowledge of Dirichlet boundary conditions on
the inner and outer sphere for all components. The system (80) and (81) also needs an additional (inner) boundary condition,
imposed on either hl or hX . There is, however, a slight subtlety concerning the triple system (82)–(84). As seen in Section 3.4,
the kernel of solutions to this system is of dimension 3, and since our computational domain no longer includes r = 0, all 3
basis vectors of this kernel are regular in our domain. This means that 3 boundary conditions have to be imposed overall for
inverting this system (in contrast with the sphere case, where we only imposed one). Those three conditions are imposed
here on either hrr,hg or hW on each limit of the domain. We have a priori the freedom to choose which boundary conditions
we want to impose, and where to impose them; numerical experimentation would be required to indicate whether or not
there are preferable choices.

To conclude this section, we mention also the work of [26] where the authors used the formalism presented in this paper
to solve a tensor elliptic equation that is part of a formulation of the Einstein equations. The resolution was made on a 3-
space excised by a sphere of fixed coordinate radius, where the tensor equation possessed a weak singularity property
(see [15]). The boundary condition problem was treated a little bit differently, as all boundary conditions imposed were
either emanating from the very structure of the problem, or were not needed at all. This is a consequence of the particular
behavior of that operator at the boundary; on this setting for the domain geometry, one boundary condition was imposed to
invert the system in hl and hX , and two for the system involving hrr,hg and hW .



J. Novak et al. / Journal of Computational Physics 229 (2010) 399–414 411
5. Numerical tests

5.1. Spectral methods in a sphere

The numerical schemes presented in previous sections have been implemented using a multi-domain spectral method in
spherical coordinates (see e.g. [2,16], for general presentations and [14] for a more detailed description in the case of numer-
ical relativity). We have used the LORENE numerical library [19], with scalar fields decomposed onto a basis of Chebyshev poly-
nomials, in several domains, for the r-coordinate, Fourier series for the u-coordinate and either Fourier or associated
Legendre functions for the h-coordinate (Pm

‘ ðcos hÞ, see Section 1.3). This last option is obviously needed by our algorithms,
which strongly rely on spherical harmonics decompositions and on the angular part of the Laplace operator Dhu. The other
basis of decomposition (Fourier) is quite useful for computing angular derivatives @/@h and operators such as 1/sinh, appear-
ing in e.g. (21) or (52). The coordinate singularity on the z-axis (h = 0,p) is naturally handled by the spherical harmonic
decomposition basis. We cope with the coordinate singularity at the origin (r = 0), using an even/odd radial decomposition
basis (only even/odd Chebyshev polynomials), depending on the parity of the multipole ‘ (see [5] and Section 3.2 of [14]).
The complete regularity requirement would be that, for each multipole ‘ the radial Taylor expansion of a regular function
should include only rp with p P ‘. We have found however that the simpler parity prescription described above is in practice
sufficient for the study of the wave or Poisson equations performed here.

The wave Eqs. (30) and (31) and (70)–(75) are integrated numerically by writing them as first-order systems:
@2/

@t2 ¼ D/()
@/
@t ¼ w;
@w
@t ¼ D/:

(
ð97Þ
After discretization in the angular coordinates using spherical harmonics, we then use a third-order Adams–Bashforth (ex-
plicit) time-stepping scheme with a fixed time-step dt and a Chebyshev-tau technique in the radial coordinate. The differ-
ential systems for the computation of pure spin components from the divergence-free degrees of freedom, as system (37) in
the vector case, or systems (80)–(84) in the tensor case, are solved at every time-step in the Chebyshev coefficient space. A
tau method is used to match together the solutions across the domains, and to impose the boundary conditions at r = R.
5.2. Vector wave equation

We consider here the numerical solution of the problem (8)–(10), with v i
0ðr; h;uÞ given by its Cartesian components by

(with z = rcos(h)):
vx
0 ¼ �vy

0 ¼ cosðzÞ; ð98Þ
the other component is zero. Thus, the vector v i
0 is clearly divergence-free. With appropriate boundary conditions, the solu-

tion of the problem (8)–(10) is (still in Cartesian components) simple to express:
Vxðt; r; h;uÞ ¼ �Vyðt; r; h;uÞ ¼ cosðtÞ cosðzÞ; ð99Þ
the other component being zero. The vector wave equation is solved through the two scalar wave equations for the poten-
tials A and the component Vl as explained in Section 2.4. From Eq. (99), we know the values of bi

0ðt; h;uÞ appearing in Eq. (10)
as Dirichlet boundary conditions and we can deduce its pure spin components ðbr

0; b
g
0; b

l
0 Þ. These are used to obtain Dirichlet

boundary conditions for the evolution equations for A and l, as described in Section 4.1 using Eq. (86) for A. Finally, the ellip-
tic system (37) is solved with the appropriate Dirichlet boundary condition given by the spin component br

0 (see also
Section 4.1).

We use the numerical techniques given in Section 5.1, with two domains, and numbers of points in each direction given
by (Nr,Nh,Nu). We have integrated the vector wave equation over the time interval t 2 [0,2p] and looked at the maximum in
time of two quantities to estimate the accuracy of the solution. First, the difference between the numerical solution and the
theoretical one (99), rotated to spherical basis (1), is computed. Then, the divergence of the numerical solution, expressed in
the spherical basis is also monitored. Note that, even though all the Cartesian components of Vi do not depend on the azi-
muthal angle u, the spherical components do depend on u and we have always used four points in the u-direction.

In Fig. 1, we observe as expected an exponential convergence of both the discrepancy between the theoretical and numer-
ical solutions (maximum over all grid points and all components) as functions of the number of spectral coefficients used in
the radial direction Nr, all other parameters being fixed. The same behavior has been observed when keeping Nr fixed and
varying Nh. Besides, we observe an exponential decay of the divergence of the solution in the second (or outer) domain,
whereas the divergence of the solution in the first (central) domain remains constant to the radial precision. This is due
to the matching across domains and imposition of boundary conditions, which can be seen as a modification of the solution
of the system (37) by the addition of a linear combination of homogeneous solutions. These homogeneous solutions of the
system (37) are, for each multipole ‘,r‘�1 and 1/r‘+2. The latter being singular at r = 0 is not relevant in the central domain.
The r‘�1 function is a polynomial and is well represented in the first domain, whereas in the second domain, we also need to
resolve 1/r‘+2, which is poorly approximated for low values of Nr.
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On the other hand, when varying the time-step dt, the difference between the numerical and exact solutions decreases as
Oðdt3Þ (see Fig. 2), as expected for a third-order scheme. Another feature verified in Fig. 2 is the fact that the divergence of the
solution is (almost) independent of the time-step, being thus only a function of the spatial resolution. The best accuracy ob-
served in Fig. 1 is limited by angular resolution and the fact that the divergence is computed using spherical components (Eq.
(12)), whereas the divergence-free constraint is imposed using pure spin components (Eq. (24)). Therefore, the computation
of derivatives in Eq. (21) to obtain the spherical components introduces additional numerical noise, depending on the angu-
lar resolution.

5.3. Divergence-free and traceless tensor wave equation

Similarly to Section 5.2, we consider here the numerical solution of the problem (39)–(41), with aij
0ðr; h;uÞ given in the

Cartesian basis by (with z = rcos(h)):
Fig. 2.
time-st
axx
0 ¼ �ayy

0 ¼ cosðzÞ; ð100Þ
all the other components are zero. Thus the tensor aij
0 is clearly symmetric, divergence-free and trace-free. With cij

0 ¼ 0 and
appropriate boundary conditions, the solution of the problem (39)–(41) is (still in Cartesian components) simple to express:
hxxðt; r; h;uÞ ¼ �hyyðt; r; h;uÞ ¼ cosðtÞ cosðzÞ; ð101Þ
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all the other components being zero. The tensor wave equation is solved through the two scalar wave-like equations for the
potentials A and eB as explained in Section 3.4. From Eq. (101), we know the values of bij

0ðt; h;uÞ appearing in Eq. (41) as
Dirichlet boundary conditions and we can deduce its pure spin components ðbrr

0 ; b
g
0; b

l
0 Þ. These are used to obtain Dirichlet

boundary conditions for the evolution equations for A and eB , as described in Section 4.2 using Eqs. (89) and (96), respec-
tively. Finally, the elliptic systems (80)–(84) are solved with the appropriate Dirichlet boundary conditions given by the spin
components of bij

0, namely brr
0 and bl

o . We have integrated the tensor wave equation following the same procedure as in Sec-
tion 5.2. results are displayed in Figs. 3 and 4, where we observe as expected an exponential convergence of both the dis-
crepancy between the theoretical and numerical solutions, and the divergence of the numerical, as functions of Nr. When
varying the time-step dt, the difference between the numerical and exact solutions decreases as Oðdt3Þ, as expected. Here
again, the divergence of the solution is (almost) independent of the time-step, being thus only a function of the spatial res-
olution, from the same reasons as in the vector case.
6. Concluding remarks

We have described a new numerical method for solving the wave equation of a rank-two symmetric tensor on a spherical
grid, ensuring the divergence-free condition on this tensor. In order to describe this method, we have first addressed the vec-
tor case, for which we have reformulated the poloidal–toroidal decomposition in spherical components. This approach,
which relies on a decomposition onto vector spherical harmonics was then generalized to the case of a symmetric tensor.
0.00010.001
Time-step

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

A
bs

ol
ut

e 
er

ro
r

Accuracy of the solution
Divergence of the solution

Fig. 4. Decay of the errors (difference with theoretical solution and divergence of the numerical solution) for the tensor wave equation, as a function of the
time-step dt. Other settings are R = 6, Nr = 17, Nh = 17, Nu = 4.
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Through numerical tests of the vector and tensor wave evolution in a sphere using spectral explicit time schemes, we have
observed that this method was convergent and accurate. In particular, the level at which the divergence-free condition is
violated is determined only by the spatial discretization and does not depend on the time-step, as expected. This method
strongly relies on the decomposition onto spherical harmonic spectral bases, but is not bound to spectral methods for the
representation of the radial coordinate.

The discussion in Section 4 gave us the compatibility conditions (86), (89) and (96), which are necessary to obtain bound-
ary conditions for the additional scalar field equations, representing the evolution of the divergence-free degrees of freedom
of our objects (A;A; eB). The numerical tests performed in this study have dealt only with simple Dirichlet boundary condi-
tions. However, it would be rather straightforward to generalize them to more complex boundary conditions, which are
needed in realistic simulations of gravitational waves [18,22,23].

In this respect, an interesting issue would probably be the general well-posed nature of these boundary conditions with
respect to our scheme, and how the modifications for these conditions with this method, sketched in Sections 4.1 and 4.2,
would alter the physical behavior of the solution. One could for example think of a Robin-like boundary setting linked to an
outer wave-absorbing condition (as in [22]), instead of the Dirichlet setting studied here; the fact that boundary conditions
may be only partially verified could have an effect on how this required feature at the boundary would be described even-
tually in our scheme. The same type of questions arise in a more general case, where the source terms of the equations are
non-vanishing: these sources would also require well-posedness conditions (i.e. a vanishing divergence for the wave equa-
tion). If this requirement is not satisfied (because of the iteration procedure or numerical errors), although the problem is
then mathematically ill-posed, our scheme will still converge: it provides us with a solution of the wave equation with a
source that is basically the divergence-free part of the original ill-posed source. The influence of this feature on the general
stability and physical relevance of the procedure is an open issue.

Future studies include the simulations of perturbed black hole spacetimes, with the extraction of gravitational waves, and
the solution of general-relativistic magneto-hydrodynamics in the case of a rotating neutron star.
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